Integrated Framework For Executable Architectures Development

Chris Janczura and Bianca Rinaldi
Defence Science and Technology Organisation
Outline

– Problem Description
– Motivation
– Framework Description
 • Techniques and Tools
 • Related Work
– Framework Automation
– Conclusions
Problem Description

SoS integration

New capability

Existing capabilities

Force elements

Force structure
Problem Description / Motivation

Characteristics of System/Problem
- large
- ill-defined
- concurrent
- distributed
- probabilistic
- event-driven
- timed
- SoS integration

Static Models

Equivalent

Executable Models

DoDAF, DAF, MODAF, IDEF0, Business Process Modelling, TOGAF, IAF, Workflow models, UML, rich pictures, informal drawings

Techniques/Methods

CPN, Influence Nets, Bayesian Networks, State machines, Stochastic, Discrete-Event Systems

Implementation/Tools

C-MAP CORE PowerPoint System Architect DOORS Visio MindGenius ExtendSim OpNet CPN Tools CORESim MATLAB STK Yeeper COAST
Framework Description

1. Architecture design
 - Problem definition
 - Functional decomposition of the problem
 - IDEF0 diagram construction
 - Specification of rules and sequences
 - Specification of other architecture products as required

2. Architecture products
 - CORE tool architecture model implementation
 - Refinement of CORE schema

3. Synthesis of executable model
 - XML output
 - XQuery script and translation technology
 - CPN model construction (automatic and manual)
 - Construction of other executable models as required

4. Analysis of data produced by the executable model
Framework Description

Problem Description

DoDAF

Domain Knowledge

Analysis

Change Schema

Results

Recommendations

<table>
<thead>
<tr>
<th>Option</th>
<th>Cost (mln $)</th>
<th>Readiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>79%</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>79%</td>
</tr>
</tbody>
</table>

CORE to CPN Tool

(XQuery and Java)

Input/Interpretation
Framework Description

- DoDAF (US)
- Communication device
- Evolution
- Shared Repository
- Views are built from underlying data elements
- Visual and some textual representation of data
- Other similar Architecture Frameworks include
 - MoDAF (UK)
 - DAF (AU)
Framework Description Tools: CORE

- CORE and CORESim
- Integrated Systems Engineering tool
- Used during the requirements and analysis stages of building a systems architecture
- DoDAF 1.5 (current version)
- Graphical representation of functional and data requirements
- Collaborative
- Traceability
Framework Description Tools: Petri Nets

- Technique suited to the specification and development of concurrent and distributed systems
- Clear and intuitive graphical representation
- Mathematical foundations – sound methods for analysis
Framework Description Tools: Petri Nets

- Bipartite directed graph
 - Set of places
 - Set of transitions
 - Set of arcs
 - Associated annotation and initial marking

- Typically places represent resources and transitions represent events

- Analysis
 - Reachability
 - Invariant
 - Reduction
Framework Description: Related Work

- Raytheon Company
- MITRE Corporation
- Lockheed-Martin
- Defense Information Systems Agency (Arlington)
- George Mason University
- University of Arizona
Framework Automation

- Activities
- Nodes
- Information
- Triggers

Schema
- Data_Type
- Value

Rules (OV-6a)
- Initial Marking
Colour Petri Net (CPN) Model Construction

- Transition and Places
- Colour Sets and declarations
- CPN Layout
Conclusions

• Integrated framework for executable architectures
• Framework automation
• Applications
• Measures
Integrated Framework For Executable Architectures Development

Dr Chris Janczura and Bianca Rinaldi
Defence Science and Technology Organisation

DSTO Fern Hill
Department of Defence
Canberra, ACT 2600

Ph: 02 6266 6286
Fax: 02 6266 6180
Email: chris.janczua@defence.gov.au